摘要
基于深度学习的方法,在HL-2A装置上开发出了一套边缘局域模(ELM)实时识别算法。算法使用5200次放电数据(约24.19万数据切片)进行学习,得到一个深度为22层的卷积神经网络。为衡量算法的识别能力,识别了HL-2A装置自2009年实现稳定ELMyH模放电以来所有历史数据(约26000次放电数据),共识别出1665次H模放电,其中误识别35次,误报率为2.10%。在实际的1634次H模放电中,漏识别4次,漏识别率为0.24%。该误报率和漏报率可以满足ELM实时识别的精度要求。识别算法在实时控制环境下,对单个时间点的平均计算时间为0.46ms,可以满足实时控制的计算速度要求。
-
单位核工业西南物理研究院