摘要
针对曳引轮轴承故障诊断效果易受变转速工况和环境噪声影响的问题,提出了一种基于轿厢运行速度估计曳引轮转速的角域重采样方法,以及基于麻雀搜索算法(SSA)优化变分模态分解(VMD)参数的曳引轮轴承故障诊断方法。首先,采用轿厢运行速度估计曳引轮转速的方法,对曳引轮轴承振动信号进行了角域重采样;然后,采用SSA算法优化VMD参数的方法,对振动信号进行了分解,并根据最大峭度准则选取了分量,提取了曳引轮轴承故障特征指标;最后,搭建了电梯试验台,开展了故障注入试验,构建了多种分类模型,对基于角域重采样与SSA-VMD的曳引轮轴承故障诊断方法的有效性进行了验证。研究结果表明:曳引轮轴承角域重采样后的诊断效果明显优于未角域重采样的诊断效果,故障识别率提高了5%以上;实验条件下采用SSA-VMD方法能够准确地提取曳引轮轴承故障特征,故障识别率可达到95%。
- 单位