摘要
遥感BRDF物理模型均建立于一定的假设或基于某些理想状况,其模拟的数据与观测数据之间多少会存在一些差异(误差)。利用BRDF模型反演地表参数时,如果不加选择地使用所有观测数据,势必会影响模型参数反演的准确度。遥感反演时一般都采用代价函数进行参数拟合。经典的最小二乘(LS)拟合代价函数对正态分布误差具有一定的抗干扰性,但是当观测数据含有异常值时却会导致反演结果的不稳定。最小中值平方(LMS)方法具有鲁棒性特点,反演时若将其作为代价函数,则可以有效地检测出观测数据中含有的异常值,从而可以使模型反演准确度提高。本文以遥感BRDF物理模型———SAIL模型为例,使用模拟数据与真实地面观测数据,构建LM...
-
单位北京师范大学; 遥感科学国家重点实验室