摘要

针对基于深度学习的目标检测模型如何能更高效地训练问题,探究数据增强、类标签平滑、学习率优化和随机尺度训练四种优化训练方法对于检测性能的提升程度,并将其用于单阶段检测模型YOLOv3和双阶段检测模型Faster R-CNN。在PASCAL VOC数据集上进行训练测试,证明这些方法都能在一定程度上提高检测准确率,并阐释了各种方法提升准确率的原因。在MS COCO数据集上实验证明这些优化训练方法的泛化能力,能够更高效地训练目标检测模型。