摘要

为了提高短时交通流预测的精度,提出了基于奇异谱分析和组合核函数最小二乘支持向量机(CKF-LSSVM)的短时交通流预测模型。首先,采用奇异谱分析方法,滤除交通流序列的噪声成分。然后,使用降噪后的交通流数据训练CKF-LSSVM,并通过粒子群优化算法确定模型参数。最后,以厦门市的实测数据为基础,对预测模型进行实验验证和对比分析。结果表明:本文所构建模型具有较好的预测效果,能够有效提高短时交通流预测精度。

  • 单位
    吉林大学; 汽车仿真与控制国家重点实验室

全文