摘要

为精确预测河流水质中的铵离子(NH+4)浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成合成时间序列数据;采用CNN对输入的数据进行特征提取,并通过全连接层将数据输入到LSTM中得到预测值,从而建立TimeGAN-CNN-LSTM河流水质预测模型。试验结果表明,模型预测效果良好,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)分别为0.07、0.08和0.97,比CNN-LSTM模型分别提高了45.45%、47.06%和19.75%,比LSTM模型分别提高了50%、50%和21.25%。TimeGAN-CNN-LSTM既解决了训练模型时数据不充分的问题,又能够充分提取水质数据在时间和空间上的特征,具有较高的应用价值。

全文