摘要
密集异构网络(Dense Heterogeneous Network, DHN)通过部署小基站可以提升网络容量和用户速率,但小基站的密集部署会产生巨大的能耗和严重的干扰,进而影响系统的能量效率(Energy Efficiency, EE)和频谱效率(Spectral Efficiency, SE)。在保证用户服务质量(Quality of Service, QoS)需求的前提下,为了联合优化系统的能量效率和频谱效率,研究了密集异构网络中下行链路的资源分配(Resource Allocation, RA)问题。首先,将频谱和小基站发射功率分配问题建模为联合优化系统能量效率和频谱效率的多目标优化问题;其次,提出了基于单策略多目标强化学习(Single-strategy Multi-objective Reinforcement Learning, SMRL)的资源分配算法求解所建立的多目标优化问题。仿真结果表明,与基于单目标强化学习的资源分配算法相比,所提算法可以实现系统能量效率和频谱效率的联合优化,与基于群体智能算法的资源分配算法相比,所提算法的系统能量效率提高了1%~1.5%,频谱效率提高了1.3%~2.5%。
- 单位