为实现对灰度不均匀脑核磁共振(MR)图像分割的同时进行有偏场估计并校正,提出一种基于局部高斯分布拟合(LGDF)模型的多相水平集方法。通过分析图像有偏场模型的局部特性,将有偏场乘性因子引入到图像局部灰度均值的表达中,从而使有偏场乘性因子成为新的能量函数的变量。能量函数的迭代最小化既实现了目标组织分割,又有效估计了有偏场。合成图像和仿真脑MR图像实验结果表明,本文方法比现有多种方法分割性能更好,且利用本文方法估计的有偏场校正后的图像有更好的视觉效果。