在深度学习的理论框架下,针对预测全球卫星导航系统(GNSS)时间序列,传统的经验风险最小化预测模型误差大精度低,泛化性能差且对历史数据的经验依赖大的问题.提出一种采用结构风险最小化原则的基于支持向量机(SVM)的时间序列预测模型.通过和多层的BP神经网络预测模型预测效果比较,结果证明SVM预测模型拥有更好的时间序列预测效果.