摘要
针对传统客观心理学参量在非稳态噪声品质预测中的不足,以汽车关门声为对象,提出一种基于EEMD分解的样本熵表征关门声的信号特征,并结合小波神经网络进行声品质预测。对声样本进行EEMD分解得到IMF分量,计算各IMF分量的样本熵,并构造成特征向量。分别以此特征向量和声品质主观评分值作为输入输出构建小波神经网络预测模型。作为对比,构建基于该特征向量的BP网络预测模型、基于心理学参量的小波神经网络预测模型和BP网络预测模型。分析结果表明,在关门声品质预测中,EEMD样本熵比客观心理学参数能更好的反映信号的时变非稳态特性,预测效果更好;且小波神经网络较BP网络的预测精度更高,模型训练速度更快。
-
单位汽车车身先进设计制造国家重点实验室; 湖南大学