摘要
机载LiDAR数据分类是根据数据特征为每个点指定类别标签。针对现有方法忽略全波形与点云在物理特性上的关联、缺乏对邻域几何和语义相关性的深入挖掘,从而导致捕获局部结构能力不足的问题,搭建了结合目标物理与几何特性的分类方法,实现了由全波形和点云组成的机载LiDAR数据端到端分类。首先,构建了特征融合模块,提取了全波形时序特征和点云几何特征,依据两种数据物理意义上的关联,通过双低秩矩阵实现了全波形与点云特征级融合。其次,构建了邻域特征增强模块,挖掘点对相关性,增强对局部几何结构的学习。最后基于层次化编解码结构搭建了分类网络。该网络在机载LiDAR数据集上测试,达到平均精度0.96、平均召回率0.90、平均F1分数0.92,证明了网络的有效性。
- 单位