摘要
图像超分辨率重建旨在依据低分辨率图像重建出接近真实的高分辨率图像,现有基于卷积神经网络的图像超分辨率重建方法存在网络参数量大、重建速度慢等问题,从而限制其在内存资源小的终端设备上的应用。提出一种基于深度可分离卷积的轻量级图像超分辨率重建网络,利用深度可分离卷积提取图像的特征信息,减少网络的参数量,采用对比度感知通道注意力机制获取图像的对比度信息,并将其作为全局信息,同时对提取特征的不同通道权重进行重新分配,增强重建图像的细节纹理信息。在此基础上,采用亚像素卷积对图像特征进行上采样操作,提高整体重建图像质量。实验结果表明,当放大倍数为2、3和4时,该网络的参数量分别为140 000、147 000和152 000,重建时间为0.020 s、0.014 s和0.011 s,相比VDSR、RFDN、IDN等网络,在保证重建效果的前提下能够有效减少网络参数量。
-
单位中国人民解放军战略支援部队信息工程大学