针对常规神经网络板形识别方法中存在的不足,提出了以PCA替代欧氏距离作为提取特征的手段,并将所设计的PCA-RBF板形识别模型以FPGA为硬件实现载体进行了仿真研究。仿真结果表明,设计的PCA-RBF板形识别模型能够正确识别出板形缺陷,网络结构比常规RBF板形识别模型相对简化,同时识别精度提升了59%,抗干扰能力提升了82%。FPGA仿真结果在精度和实时性上可以满足实际工程需要。