摘要

目的 探讨CT影像组学定量特征在预测肺癌表皮生长因子受体(EGFR)突变中的价值。方法 回顾性分析2013年9月至2018年10月在苏州大学附属第一医院确诊的144例有EGFR基因检测结果的肺癌患者的资料,男75例、女69例,中位年龄54(25~68)岁。其中,EGFR突变型81例,男39例、女42例,中位年龄52(25~64)岁;EGFR野生型63例,男36例、女27例,中位年龄56(32~68)岁。按照2∶1的比例随机分配为训练组和验证组。利用MaZda软件提取影像组学特征包括灰度直方图(GLH)、绝对梯度(GRA)、灰度共生矩阵(GLCM)、灰度游程矩阵(GLRLM)、自回归模型(ARM)和小波变换(WAV)等特征。采用费希尔参数法(Fisher)、分类错误率联合平均相关系数法(POE+ACC)和相关信息测度法(MI)3种特征选择方法对提取的定量特征进行筛选,分别选择10个相关的最优特征,得到最优特征子集。然后用线性判别分析法(LDA)和非线性判别分析法(NDA)对三组最优特征子集进行分析,计算出其鉴别肺癌EGFR突变型与野生型的准确度、敏感度和特异度,利用人工神经网络(ANN)对训练组准确度最高的最优特征子集建立预测模型,并利用建立的预测模型,对验证组肺癌EGFR突变型与野生型进行鉴别诊断。结果 MaZda软件提取训练组肺癌EGFR突变型与野生型图像定量特征,一共301个。Fisher-NDA和(POE+ACC)-NDA法选择的最优特征子集鉴别肺癌EGFR突变型与野生型的准确度最高,为93.8%。Fisher-NDA法最优特征子集预测模型鉴别验证组中肺癌EGFR突变型与野生型的准确度、敏感度和特异度分别为83.3%、86.7%和77.8%。结论 CT影像组学最优特征子集在预测肺癌EGFR突变中有较高的准确度,为预测肺癌基因表达提供了一种新的方法。