摘要
传统的轨迹预测算法训练模型时需要耗费大量时间,且时空复杂度高、执行效率低,不能满足实时预测的需求。为此,提出一种改进的移动目标轨迹预测算法。基于欧氏距离进行轨迹相似度计算以提高预测准确性和实效性,根据最小描述长度原理对预测后的轨迹进行简化,优化运算效率。实验结果表明,该算法能准确预测移动目标的轨迹,并且具有较低的算法复杂度,适用于海量数据背景下的移动目标轨迹预测。
-
单位南京理工大学; 中国电子科技集团公司第三十二研究所