摘要
局部放电(partial discharge,PD)特高频(ultra high frequency,UHF)信号检测过程易受到白噪声和周期性窄带干扰的严重影响。为有效提取PD UHF信号、抑制干扰,提出一种基于奇异值分解(singular value decomposition,SVD)和低秩径向基函数(radical basis function,RBF)神经网络的去噪方法。首先,将染噪局部放电信号构造为Hankel矩阵,并奇异分解到特征矩阵空间;然后,把特征矩阵中奇异值突变点设为阈值,以去除窄带干扰;最后,采用RBF神经网络逼近去干扰后的PD信号,并采用Gaussian窗滤波以提取局放信号。所提方法与逆向分离(reverse separation,RS)和形态学小波综合滤波器(morphology wavelet filter,MWF)进行对比。从仿真和实测结果表明,该方法对周期性窄带干扰和白噪声有着强抑制作用,评价指标更为显著。
-
单位国网四川省电力公司电力科学研究院; 四川大学