摘要
本发明公开了一种分簇式联邦学习驱动的机械故障诊断方法、装置及介质,其中方法包括:在中心服务器上构建故障诊断模型,将模型参数发送至客户端;客户端对故障诊断模型进行优化,将特征表示向量和模型参数发送至中心服务器;利用K-means聚类算法对表示向量进行分簇,计算聚类轮廓系数;根据聚类轮廓系数,对客户端的模型参数采用对应的参数更新策略进行更新,并将更新后的模型参数发送给对应的客户端;中心服务器与客户端通讯次数达到预设迭代次数时,完成模型训练。本发明在满足维护客户端的机械设备数据隐私的同时,提高了旋转机械设备关键部件故障诊断的准确率,更有利地保证了安全生产。本发明可广泛应用于旋转机械设备故障诊断领域。
- 单位