摘要

提出了一种基于KSOM-BP神经网络的交通流短时预测模型。利用基于核函数的样本自组织映射神经网络(KSOM),在没有任何先验知识的情况下,自组织、自学习地将具有相似统计特性的历史样本划分成一类,促使分类样本统计特性更集中显著。对每个类别的样本分别建立动量-自适应学习速率的BP神经网络预测模型,以期提高交通流短时预测精度,减少预测时间。结合实际城市道路数据对模型进行验证。验证结果表明:KSOM-BP神经网络的预测误差统计指标MARE小于7%,比基于全部样本训练的BP神经网络的MARE减少4%左右;同时,KSOM-BP神经网络建模时间更短,证明了本文方法的有效性和先进性。

  • 单位
    吉林大学; 汽车仿真与控制国家重点实验室

全文