摘要

基于某超超临界660 MW机组燃煤锅炉现场热态实验数据,利用MATLAB智能工具箱,分别采用径向基(RBF)神经网络和BP神经网络对该锅炉NOx排放特性进行建模,采用交替梯度算法对RBF神经网络预测模型进行输出层权值及RBF函数的中心与标准偏差值优化,对BP神经网络采用动量法进行改进。2种模型的仿真和预测结果对比分析表明:参数优化后的RBF神经网络预测模型预测结果的最大误差为3.0%,平均误差为1.75%;改进后的BP神经网络预测模型预测结果最大误差为6.6%,平均误差为4.5%;2种建模方法均具有较好的准确性和泛化能力,其中RBF神经网络模型的计算速度快,拟合和泛化能力更强。