摘要
在方面级情感分类中,常用的方法是用卷积神经网络或循环神经网络提取特征,利用注意力权重获取序列中不同词汇的重要程度。但此类方法未能很好地利用文本的句法信息,导致模型不能准确地在评价词与方面词之间建立联系。该文提出一种图卷积神经记忆网络模型(MemGCN)来解决此依赖问题。首先通过记忆网络存储文本表示与辅助信息,然后利用基于依存句法树的图卷积神经网络获取文本的句法信息。最后,使用注意力机制融合句法信息与其他辅助信息。在SemEval 2014任务和Twitter数据集上的实验结果表明,MemGCN显著提升了模型性能。
-
单位辽宁工程技术大学; 中国科学院信息工程研究所