摘要
为研究检测红松籽仁蛋白质含量的近红外光谱分析技术,在用变量标准化校正+一阶导数+小波变换对原始光谱进行预处理的基础上,分别运用主成分分析、改进型局部线性嵌入、局部切空间对齐、黑塞特征映射进行光谱数据的降维处理,分别构建偏最小二乘、岭回归、支持向量回归、极度梯度提升数学模型。结果表明,改进型局部线性嵌入+支持向量回归法建立的参数优化模型质量最佳。其降维方法优化参数为:维度取4,邻域数取50;验证集均方差均值为0.568 1,验证集皮尔逊相关系数均值达0.940 8。可见,模型的预测结果是可靠的,能够实现对红松籽仁蛋白质含量的无损、准确检测。
-
单位机电工程学院; 哈尔滨金融学院; 东北林业大学