摘要

为研究水稻叶片叶绿素相对含量(SPAD)在3种水分处理和5种施氮处理下的变化规律,探讨无人机多光谱遥感技术反演水稻SPAD的可行性,本研究利用大疆精灵4多光谱无人机,采集了水稻拔节孕穗期、抽穗开花期和乳熟期的冠层多光谱遥感影像,并同步测定水稻SPAD值,基于25个光谱变量(5个波段反射率和20个植被指数),采用多元线性逐步回归、岭回归和套索回归3种方法构建了水稻SPAD的反演模型。结果表明:水稻3个生育期的SPAD最佳反演模型均是采用套索回归方法构建的,其中乳熟期建立的SPAD最佳反演模型在3个生育期中的反演精度最高,决定系数为0.782,均方根误差为1.217 7,相对误差为6.611 3%。因此,该研究可对水稻叶片SPAD进行遥感监测,并为水稻精准灌溉和施肥提供科学依据和数据支撑。