摘要

低剂量计算机断层扫描(Low-dose Computed Tomography, LDCT)在临床中有着广泛的应用,可以有效减轻对病人的辐射剂量。但是成像后的低剂量CT图像中含有明显的噪声和条形伪影,影响医师的诊断。提出了一种基于Transformer和CNN的去噪网络,该网络是一种改进的编解码网络架构,其编码端的每一层由卷积模块与Transformer模块融合而成,用来提取每一层的局部特征和全局特征,同时引入融合模块用来有效地融合提取的局部特征和全局特征。并把融合后的特征通过跳跃连接融入解码端对应的层,解码端的每一层通过卷积模块提取有效特征进而重建去噪后的图像。在真实数据集Mayo上的实验结果说明所提出的网络不仅可以有效去除噪声,还能够保持图像的边缘。