摘要

设计提出了1种针对高光谱图像分类任务的3D-MSCNN模型。在PCA降维的基础上,利用3D空谱特征提取网络和2D多尺度特征提取网络实现高光谱图像特征提取,充分发挥高光谱图像空谱信息价值,增强对不同尺度地表覆盖的表达能力。最后,利用Softmax分类损失函数实现高光谱图像分类任务。实验结果表明,本文算法在Indian Pines和Pavia University数据集上都取得了较好的分类效果。与CD-CNN、3D-CNN、SS-Net和HybirdSN等方法相比,本文算法能够有效提升总体精度、平均精度和Kappa系数等客观评价指标。