针对合成孔径雷达(SAR)图像目标分类中扩展操作条件的重难点问题,提出了基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法。该方法采用贝叶斯卷积神经网络获得更为可靠的分类网络,通过数据增强可为网络训练提供更为充足的样本数据,覆盖噪声干扰及部分遮挡等情形。实验结果表明,该方法在标准操作条件、噪声干扰及部分遮挡条件下,相比现有几类方法具有更强的有效性和稳健性。