摘要
耕地资源的快速、精准提取是支撑耕地保护和耕地用途管制的重要基础。随着高分辨率遥感和人工智能技术的快速发展,高分辨率遥感耕地提取已逐渐由传统的基于像元和面向对象的分类算法过渡至以深度学习为代表的智能化耕地提取新阶段,并取得不少成果,但也同样面临着诸多挑战。首先,梳理和分析了传统耕地提取算法和基于深度学习的智能化耕地提取算法的研究现状,阐述了深度学习支持下的耕地提取研究的必要性;然后,结合全卷积神经网络的发展历程,介绍了深度语义分割技术的基本原理以及在耕地提取应用中的实验流程,并归纳了主要的智能耕地提取算法;最后,围绕智能化耕地提取研究存在的不足,探讨了智能化耕地提取技术的发展趋势。
- 单位