特征属性描述下设备的新故障零样本识别

作者:申海锋; 石颉*; 李莎莎; 柴梓嘉
来源:微电子学与计算机, 2023, (06): 77-84.
DOI:10.19304/J.ISSN1000-7180.2022.0604

摘要

自动化升级背景下,设备间耦合性不断提高,故障表现形式繁杂多样.单一故障不及时处理极易造成影响范围的扩大,使得事故进一步升级.为保证设备的正常运转,对传统的基于案例分析生成的故障诊断方法提出了新的要求,具体包括:低成本、长期监测、少样本或零样本故障识别.针对这些新需求,本文提出将图像处理领域中使用的零样本分类识别思想引入故障诊断领域.通过研究现有故障样本的特征参量,对其进行寻优确定用于状态监测的特征,采用模糊神经网络构成特征属性描述器,将特征描述为设备属性,再由ART网络以属性描述为基础,对设备进行长期监测的同时增量学习.即以少量设备样本或相似样本的分析为基础构建监测与学习机制,识别原有故障的同时学习并记录新类故障.为说明本方法的可行性与有效性,文章利用电机故障数据集以少量样本为先验知识构建系统,混合未知故障样本进行系统测试.实验结果表明,零样本分类思想的应用有望解决当前技术背景下设备故障诊断的新挑战.

全文