摘要
动态脑网络能有效反映脑网络中连接结构的动态变化信息,被广泛使用于脑疾病的识别研究中。动态脑网络由一组连接矩阵组成。通常研究者会基于矩阵上三角元素向量的L2距离,计算所有样本连接矩阵的距离矩阵,使用状态聚类将这些连接矩阵划分为不同的状态。但是简单地使用L2距离,且在全部样本上进行状态聚类会导致忽视连接矩阵所代表的脑网络的图结构信息以及个体之间的差异。因此,提出一种新的基于图核的动态脑网络状态构建方法。该方法针对单个体的动态脑网络设计,使用图核衡量单个样本的动态脑网络连接矩阵之间的相似性,随后根据相似性矩阵,将连接矩阵与其最相似的矩阵进行合并。在精神分裂症数据集上验证该方法的有效性,其结果证明所提方法可以获取81.6%的分类精度。
-
单位江苏商贸职业学院; 南通大学