摘要
为了提高短时交通流预测精度,提出了基于自适应噪声完全集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和人工蜂群算法(Artificial Bee Colony,ABC)优化长短时记忆(Long Short-Term Memory,LSTM)神经网络的短时交通流预测方法。首先将非平稳、非线性的交通流数据利用CEEMDAN算法分解成相对平稳的多个固有模态分量和趋势分量;然后用人工蜂群算法对LSTM的参数进行寻优选择,将分解后的每个模态分量分别建立CEEMDAN-ABC-LSTM模型进行预测,最后叠加每个分量的预测值输出最终的预测结果。用感应线圈实测数据对构建模型进行验证分析,实验结果表明:模型具有较高的预测性能,其平均预测精度较LSTM,ABC-SVM和ABC-BPNN模型分别提升了19.8%,25.6%和38.7%。
- 单位