摘要

针对野外扫描原始点云中存在各种形态噪声点和大量冗余数据,提出一种基于方法库、布料模拟滤波和曲率分级等综合算法运用的点云精简优化策略。首先利用统计滤波去除远距离稀疏的噪声点,然后利用直通滤波分割出含有近距离大密度噪声点的点云块,利用布料模拟滤波算法去除这类噪声点,再利用半径滤波去除目标点云周围近距离的噪声点,最后基于曲率分级压缩方法实现对点云冗余数据的去除,并与两种传统的压缩方法进行实验对比分析。实验结果表明,所提的精简优化策略能有效去除点云中的噪声点,在保留点云大部分特征点的同时,能最大化减少点云数据的冗余量,提高了点云模型重建的数据质量。