摘要

高速列车运行过程优化是一个多目标、非线性优化问题.为研究列车ATO多目标优化问题,以列车运行的准时性、停车精确性、舒适性、能耗性为控制目标,列车动力学模型为约束条件,同时考虑列车惰行过分相区,建立列车多目标优化模型,提出了一种改进的生物地理学(Biogeography-Based Optimization,BBO)优化ATO速度曲线方法.为提高算法优化性能,使用更加倾向自然法则的双曲正切变体迁移模型;在变异过程中使用差分进化(Differential Evolutionary,DE)变异策略,提高种群多样性,同时加入柯西分布随机数帮助算法跳出局部最优;利用反向学习提高变异后个体的多样性,保证算法的全域搜索.同时通过基准测试函数验证该算法收敛速度和全局优化能力的优越性.以CRH3型高速列车和汉宜客运某线路进行仿真实验,结果表明,所提方法可以使列车追踪运行更加高效、舒适、安全和节能,其中舒适度提升了39.24%,能耗降低了3.565 3%.