摘要

为解决钢轨表面伤损检测问题,提出一种少样本条件下的钢轨表面伤损检测方法。首先,设计样本随机组合策略,扩充钢轨表面伤损数据集规模;其次,引入迁移学习方法,在公开大规模数据集上进行迁移学习训练,以获得迁移学习能力,降低对钢轨表面伤损样本的需求数量;最后,加入通道自注意力机制,提高模型的训练速度。实验证明,该方法可有效提高钢轨表面伤损的识别精度。

全文