摘要
输电线路作为电网的基础组件,其故障是影响电网稳定运行的主因,其中鸟类是输电线路的主要安全隐患。为了实现低耗能、高精度的驱鸟,论文提出一种基于图像切片的移动端鸟类检测算法,同时为减少图片传输的网络时延及避免因网络中断造成的数据丢失,鸟类检测在移动终端实现。但是移动终端的计算性能和存储性能较低,无法直接运行基于深度学习的目标检测算法,因此论文将图像进行切片把目标检测问题转换为图像分类问题,采用ResNet18对切片进行鸟类识别。此外,为进一步减少无鸟图像的识别时间,在对每一个切片进行识别之前,先计算实时采集图像和不包含鸟的模板图像的差值,只有差值较大时才进行识别。实验证明,论文提出的模型在精度和速度上都可以在移动端上满足输电线路鸟类检测任务的要求,具有推广意义。