摘要
为有效分析和准确预测工作面绝对瓦斯涌出量,基于快速独立分量分析(FastICA)和改进的极限向量机(BA-ELM)基本原理,建立FastICA-BA-ELM多尺度时变预测模型进行工作面瓦斯涌出量的预测。利用FastICA对瓦斯涌出量时变序列进行多层深度分解,获取相互独立的多尺度分量;对各分量运用BA-ELM模型进行预测;等权叠加各预测值重构模型预测结果。以屯兰矿12507回采工作面瓦斯涌出量监测样本为例进行分析研究,结果表明:监测数据自身携带诱使瓦斯涌出量变化的大量信息,FastICA-BA-ELM模型能有效反映出监测数据间的本质结构,进一步凸显瓦斯涌出量的非平稳特征;模型预测的平均相对误差为1. 577%,平均绝对误差为0. 1124m3/min,均方根误差为0. 1244m3/min,较其他模型,其预测精度和稳定性显著提高。为煤矿瓦斯完全管理工作提供了良好的理论与技术支撑。
-
单位北京工业职业技术学院