摘要
传统基于稀疏表示的人脸识别方法因未充分利用样本包含的信息,而存在较低的鲁棒性和识别率等问题.提出基于小波变换的多字典人脸识别方法.提取人脸图像的多尺度纹理特征,构建多字典,每个字典分别对应样本的原始图像和不同尺度的纹理信息.为提高人脸识别的准确性,在训练阶段利用相同的系数表示将不同字典相关联,深入挖掘了人脸图像与其不同尺度纹理间的共性,探索人脸不同特征的内在联系.较仅聚焦于样本单一特征的传统方法,克服了忽视样本不同特征间联系的不足,更深刻地挖掘训练样本人脸特征且突出了不同类训练样本的个性特征.在多个人脸数据库上的实验结果表明,识别性能有明显的提升.