摘要

深度神经网络在目标检测任务上需要训练大量的标签数据,然而在许多实际应用场景中标签数据难以获取。针对这一问题,提出了一种面向小样本目标检测的多阶段特征重分布算法(MSFR)。该算法通过对特征向量进行重分布变换,解决了小样本任务下源域数据和目标域数据分布不一致的问题;通过多阶段学习策略将源域知识逐步迁移到小样本目标任务中,进一步提高知识迁移效率。在VOC数据集上的大量实验表明,与现有小样本目标检测算法相比,该算法在不同任务上的精度最高提升了9.06%。该算法在大幅提高小样本目标域类别检测性能的同时,较大限度地保持了对源域类别的检测精度,具有较大的实用价值。