摘要
煤矿设备监测参数为时间序列数据,其时序特征对健康评估的影响较大。针对传统机械设备健康评估中存在的信号时空特性提取不完备、人为经验依赖程度高、设备早期状态变化评估难等问题,建立了基于二维数组的长短期记忆降噪卷积自编码器(2D-LSTMDCAE)模型,并提出了基于2D-LSTMDCAE的煤矿旋转机械健康指标(HI)构建及状态评估方法。将一维振动数据转换为二维数组,通过二维卷积网络模型充分学习原始数据中所包含的信息,增强模型对数据特征的学习能力;将样本并行输入卷积和长短期记忆(LSTM)单元,以获取完备的信号时空特征;构建无监督学习的降噪卷积自编码器(DCAE)模型并进行样本重构,采用Bray-Curtis距离计算原始样本与重构样本间相似度,得到HI,解决设备运行过程中状态标签难以获取的问题,提升模型在强背景噪声中的适应能力。使用XJTU-SY轴承数据集验证2D-LSTMDCAE模型的特征学习能力,并采用相关性和单调性2个指标评价基于HI的状态评估方法,测试结果表明:二维输入样本构建方法及学习数据时序特征的HI构建方法对轴承的性能退化更敏感,2D-LSTMDCAE模型能够更早地检测到设备的早期故障,在测试轴承上相比于LSTMDCAE和DCAE模型构建的HI及均方根平均提前了约7 min;与LSTMDCAE和DCAE模型构建的HI、均方根相比,2D-LSTMDCAE模型构建的HI的相关性和单调性均较高,能更好地反映轴承的退化情况。采用减速器加速退化实验数据进行健康评估实验,在测试减速器上,相比于均方根指标,通过2D-LSTMDCAE模型构建的HI能够提前8 min发现早期故障,且HI相关性提高了0.007,单调性提高了0.211,能够更好地反映减速器的退化情况。
- 单位