<正>一、基本结论1.如果正数a,b,c满足a+b> c,a+c>b,b+c> a,那么以a,b,c为边长能构成一个三角形;反之,若三角形的三边长是a,b,c,那么a+b> c,a+c> b,b+c> a.注利用这一结论解决与三角形三边有关的问题时,通常要说明正数a,b,c满足三个不等式,但在实际解题过程中比较繁琐.其实,当正数a,b,c满足条件a≤b≤c时,只要a+b> c,则可说明以a,b,c为边长能构成一个三角形,即有: