摘要

针对电离层TEC非线性、非平稳的特点,建立一种基于Prophet与Elman神经网络相结合的残差改正电离层短期预报模型。利用该模型对IGS提供的不同太阳活动程度期间的电离层TEC时间序列进行建模预报。结果显示,改正模型能够反映电离层TEC的变化特征,在太阳活动低年和太阳活动高年预报的平均相对精度分别为92.9%和92.2%,均方根误差分别为0.94 TECu和1.77 TECu,精度较Prophet-Elman模型及单一Elman模型有显著提高。

全文