摘要
由于图像分类标准的可靠性较低,导致在具体的分类阶段,错误分类的情况较为普遍,提出基于深度字典学习的图像分类系统设计研究。结合图像分类的实际计算需求,在硬件构架中设置了3个数字低压差线性稳压器(Low Dropout Regulator,LDO)和旁路调节场效应晶体管(Field Effect Transistor,FET)结构,并将ET200SP的SIMATIC ET 200SP模块作为系统主体构架,从而实现图像分类标准输出模块和字典输出模块的集中控制。在软件运行逻辑的设计上,构建了具有分层特征的学习网络结构,分析得到图像稀疏度字典库,将其作为图像分类的标准,实现对图像的分类处理。测试结果表明,设计系统可以实现对图像的准确分类。
-
单位河南职业技术学院