摘要

为了解决目前水果识别检测方法效率低、误检率高、通用性低、实时性差等问题,提出了一种基于改进的你只用看一遍(YOLO)统一框架的实时目标检测YOLOv4算法的水果识别检测方法。首先在主干网络的基础上增加高效通道注意力机制,增强网络提取图像语义信息能力;其次用内卷算子替换主干网络中跨级局部模块连接处卷积层,减小了模型大小,增强了网络预测性能;最后在路径聚合网络基础上添加残差模块,加快网络收敛速度的同时防止了网络梯度爆炸。数据集选取生活中常见的火龙果、橙子、葡萄、青芒等10种水果,拍摄共获得6670张图片。结果表明,本文中的方法均值平均精度(MAP)为99.1%,准确率为95.62%,传输帧数为41.67/s; MAP相比YOLOv4提升了15.3%。该研究满足高检测精度和检测速度要求,对水果识别精度的提高具有重要的参考价值。