摘要

进行了TC17钛合金低温铣削试验,研究了不同切削条件下的已加工表面粗糙度。采用回归分析方法建立了表面粗糙度经验模型,研究了射流温度、每齿进给量、铣削速度和径向切削深度对表面粗糙度的影响规律。基于BP神经网络建立了表面粗糙度预测模型,并与经验模型进行了对比分析。研究结果表明,基于经验模型表面粗糙度值与参数间存在强相关性(R2=0.92),对表面粗糙度影响最大的因素为每齿进给量,然后依次是射流温度、径向切削深度、铣削速度,预测值与试验值均方误差为1.73×10-4μm2,最大相对误差为8.81%,误差变化幅度较大;而基于神经网络模型的预测值与试验值均方误差为3.53×10-5μm2,最大相对误差为3.64%,误差变化幅度较小,与经验模型相比,神经网络模型的预测精度和泛化能力更高,可更好地实现各参数对表面粗糙度影响的预测。