摘要
综合考虑混合式学习成绩分类预测中数据存在不平衡性和稀疏性的特点,提出了一种SMOTE-XGBoostFM混合式学习成绩分类预测模型.首先通过SMOTE采样均衡数据集;针对数据稀疏性问题,使用XGBoost对采样后的数据进行特征交叉,然后对所生成树的叶子节点进行独热编码,以生成高阶特征数据,最后将其输入因子分解机(FM)进行迭代训练以获最优模型.实验结果表明, SMOTE-XGBoost-FM模型在混合式学习成绩分类预测中准确率达到了92.7%,相较于单一的XGBoost、FM模型分别提升了5.7%和11.7%,能有效对学生学习情况进行分类预测,为提高教学效果提供参考.
- 单位