摘要

针对滚动轴承故障振动信号具有非平稳性及非线性的特点,提出一种基于自适应局部迭代滤波分解(ALIFD)模糊熵和GK聚类的滚动轴承故障诊断方法。首先对滚动轴承故障振动信号进行ALIFD分解,得到若干个本征模态函数(IMF)分量,然后通过相关性分析筛选出前3个包含主要特征信息的IMF分量,并将筛选的IMF分量的模糊熵作为特征向量,最后利用GK聚类对所得的特征向量进行识别分类。将该方法应用于滚动轴承实验数据分析,并使用分类系数和平均模糊熵对分类性能进行评价,结果表明,与基于经验模态分解模糊熵和GK聚类的故障诊断方法进行对比,该方法具有更好的分类性能。