摘要

遥感图像中车辆俯视图像具有镜像对称的特点,会导致图像中存在重复的特征。针对这种情况,提出一种优化选取Haar-like特征进行车辆识别的方法。在检测窗口中,选取2类特征:在检测窗口上半部分提取所有的矩形特征;在原检测窗口中,只使用对称于窗口对称轴、且描述上下部分差异的矩形特征,该方法既能充分表达图像的信息,又减少了重复的特征。从训练样本的灰度图和饱和度图中提取这些特征,训练级联分类器,其中每一层采用适应性提升(adaptive boosting,Ada Boost)算法训练强分类器。实验结果表明,上述方法能大幅度降低特征数量,提高检测速度,同时具有很好的识别效果。