摘要

合理分析大坝变形监测数据序列特征,精确预测大坝变形状况,是大坝安全监测的重要内容。针对常用大坝安全监测分析模型存在的不足,将人工蜂群算法与支持向量机模型结合起来,利用人工蜂群算法全局搜索能力强、收敛速度快等优点对支持向量机模型的惩罚因子C和核参数δ进行优化,建立了ABCA-SVM模型。某水电站大坝坝顶某点的112组径向位移预测实例表明,ABCA-SVM模型预测精度高于标准SVM模型的,可以在大坝安全监测领域推广应用。

  • 单位
    河海大学; 水文水资源与水利工程科学国家重点实验室