摘要

表面肌电(surface electromyogram, sEMG)信号能够反映神经肌肉的相关活动信息,被广泛应用于假肢控制、临床医学等领域,而获取干净的sEMG信号是精确地解释和应用信号的先决条件。为了消除混杂在sEMG信号中的噪声,文章提出了一种基于改进的经验模态分解(modified ensemble empirical mode decomposition, MEEMD)与二代小波改进阈值函数相结合的sEMG信号去噪方法。对含噪的sEMG信号进行MEEMD分解,再对高频的本证模态分量(intrinsic mode function, IMF)进行二代小波改进阈值函数去噪,将处理后的高频IMF分量和低频IMF分量以及残余信号进行重构,重构后的信号即为去噪sEMG信号。仿真结果表明,基于MEEMD与二代小波改进阈值函数方法的去噪性能指标高于其他方法;实验结果表明,该方法结合了MEEMD和二代小波的优点,能够很好地消除噪声,且能最大限度地保留信号中的有用信息。