摘要
为了有效改善日供水量预测精度低、泛化能力不足的问题,以义乌市4个水厂的历史日供水数据为基础,提出基于集成学习算法改进的长短时记忆(LSTM)神经网络的供水预测方法.该方法以拉依达准则预处理后的历史日供水量作为数据输入,将具备长期时序信息记忆能力的LSTM神经网络作为集成学习的弱预测器,使用网格搜索法进行网络超参数调优,使用AdaBoost集成学习算法对弱预测器进行加权组合得到强预测器.结果表明:与随机森林、AdaBoost与LSTM神经网络相比,基于集成学习算法改进的LSTM神经网络有最高的纳什效率系数(NSE)、最低的均方根误差(RMSE)与平均绝对误差(MAE),对日供水数据的变化趋势与峰值的拟合效果最好;改进LSTM供水预测方法的时序预测精度得到极大提升,有较好的泛化能力、稳定的预测性能,能够为城市水资源合理配置、一体化智能供水调度提供重要参考.
-
单位建筑工程学院; 浙江大学