摘要

为实现人机共驾模式下智能系统对驾驶人换道决策的准确识别,将换道决策细分并提出了基于改进的极端梯度提升(XGBoost)的换道决策识别模型。以实车试验采集的自然驾驶数据作为输入,并采用滑动时间窗法确定识别时刻,建立各识别时间窗口下基于XGBoost的换道决策识别模型,同时运用交叉检验和网格搜索(GS)算法进一步提升模型性能,最后利用验证集数据评估所构建GS-XGBoost模型的识别性能,并与机器学习及深度学习模型进行对比。结果表明,所提出的模型在具体换道决策辨识上具有较好的实时性和准确性,且在1.8 s和1.6 s时间窗下的识别准确率最高,达到86.2%。

全文