摘要

针对文档水平情感分析传统模型存在先验知识依赖以及语义理解不足问题,提出一种基于注意力机制与层次网络特征表示的情感分析模型TWE-ANN.采用基于CBOW方式的word2vec模型针对语料训练词向量,减小词向量间的稀疏度,使用基于Gibbs采样的LDA算法计算出文档主题分布矩阵,继而通过层次LSTM神经网络获取更为完整的文本上下文信息从而提取出深度情感特征,将文档主题分布矩阵作为模型注意力机制提取文档特征,从而实现情感分类.实验结果表明:提出的TWE-ANN模型较TSA、HAN模型分类效果较好,在Yelp2015、IMDB、Amazon数据集上的F值分别提升了1.1%、0.3%、1.8%,在Yelp2015和Amazon数据集上的RMSE值分别提升了1.3%、2.1%.